Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Microbiol Spectr ; 11(1): e0424022, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2231582

ABSTRACT

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in December of 2019 and is responsible for millions of infections and deaths across the globe. Vaccination against SARS-CoV-2 has proven effective to contain the spread of the virus and reduce disease. The production and distribution of these vaccines occurred at a remarkable pace, largely through the employment of the novel mRNA platform. However, interruptions in supply chain and high demand for clinical grade reagents have impeded the manufacture and distribution of mRNA vaccines at a time when accelerated vaccine deployment is crucial. Furthermore, the emergence of SARS-CoV-2 variants across the globe continues to threaten the efficacy of vaccines encoding the ancestral virus spike protein. Here, we report results from preclinical studies on mRNA vaccines developed using a proprietary mRNA production process developed by GreenLight Biosciences. Two mRNA vaccines encoding the full-length, nonstabilized SARS-CoV-2 spike protein, GLB-COV2-042 and GLB-COV2-043, containing uridine and pseudouridine, respectively, were evaluated in rodents for their immunogenicity and protection from SARS-CoV-2 challenge with the ancestral strain and the Alpha (B.1.1.7) and Beta (B.1.351) variants. In mice and hamsters, both vaccines induced robust spike-specific binding and neutralizing antibodies, and in mice, vaccines induced significant T cell responses with a clear Th1 bias. In hamsters, both vaccines conferred significant protection following challenge with SARS-CoV-2 as assessed by weight loss, viral load, and virus replication in the lungs and nasopharynx. These results support the development of GLB-COV2-042 and GLB-COV2-043 for clinical use. IMPORTANCE SARS-CoV-2 continues to disrupt everyday life and cause excess morbidity and mortality worldwide. Vaccination has been key to quelling the impact of this respiratory pathogen, and mRNA vaccines have led the charge on this front. However, the emergence of SARS-CoV-2 variants has sparked fears regarding vaccine efficacy. Furthermore, SARS-CoV-2 vaccines continue to be unevenly distributed across the globe. For these reasons and despite the success of emergency authorized and licensed SARS-CoV-2 vaccines, additional vaccines are needed to meet public health demands. The studies presented here are significant as they demonstrate robust protective efficacy of mRNA vaccines developed by GreenLight Biosciences against not only wild-type SARS-CoV-2, but also Alpha and Beta variants. These results support the progression of GreenLight Biosciences SARS-CoV-2 mRNA vaccines to clinical trials as another defense against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , mRNA Vaccines , Animals , Cricetinae , Humans , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , mRNA Vaccines/immunology , SARS-CoV-2/genetics
2.
Viruses ; 15(2)2023 02 09.
Article in English | MEDLINE | ID: covidwho-2236018

ABSTRACT

Females often exhibit superior immune responses compared to males toward vaccines and pathogens such as influenza viruses and SARS-CoV-2. To help explain these differences, we first studied serum immunoglobulin isotype patterns in C57BL/6 male and female mice. We focused on IgG2b, an isotype that lends to virus control and that has been previously shown to be elevated in murine females compared to males. Improvements in IgG2b serum levels, and/or IgG2b ratios with other non-IgM isotypes, were observed when: (i) wildtype (WT) female mice were compared to estrogen receptor knockout mice (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all higher in WT mice), (ii) unmanipulated female mice were compared to ovariectomized mice (IgG2b/IgA was higher in unmanipulated animals), (iii) female mice were supplemented with estrogen in the context of an inflammatory insult (IgG2b and IgG2b/IgG3 were improved by estrogen supplementation), and (iv) male mice were supplemented with testosterone, a hormone that can convert to estrogen in vivo (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all improved by supplementation). We next examined data from three sets of previously described male and female human blood samples. In each case, there were higher IgG2 levels, and/or ratios of IgG2 with non-IgM isotypes, in human females compared to males. The effects of sex and sex hormones in the mouse and human studies were subtle, but frequent, suggesting that sex hormones represent only a fraction of the factors that influence isotype patterns. Examination of the gene loci suggested that upregulation of murine IgG2b or human IgG2 could be mediated by estrogen receptor binding to estrogen response elements and cytosine-adenine (CA) repeats upstream of respective Cγ genes. Given that murine IgG2b and human IgG2 lend to virus control, the isotype biases in females may be sufficient to improve outcomes following vaccination or infection. Future attention to sex hormone levels, and consequent immunoglobulin isotype patterns, in clinical trials are encouraged to support the optimization of vaccine and drug products for male and female hosts.


Subject(s)
COVID-19 , Testosterone , Humans , Female , Male , Animals , Mice , Mice, Inbred C57BL , Receptors, Estrogen , Sex Characteristics , SARS-CoV-2 , Immunoglobulin G , Estrogens , Mice, Knockout , Immunoglobulin A
3.
Int J Mol Sci ; 21(14)2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-1934090

ABSTRACT

Questions concerning the influences of nuclear receptors and their ligands on mammalian B cells are vast in number. Here, we briefly review the effects of nuclear receptor ligands, including estrogen and vitamins, on immunoglobulin production and protection from infectious diseases. We describe nuclear receptor interactions with the B cell genome and the potential mechanisms of gene regulation. Attention to the nuclear receptor/ligand regulation of B cell function may help optimize B cell responses, improve pathogen clearance, and prevent damaging responses toward inert- and self-antigens.


Subject(s)
B-Lymphocytes/immunology , Receptors, Steroid/immunology , Animals , B-Lymphocytes/metabolism , Gene Expression Regulation , Humans , Immunity , Immunoglobulins/genetics , Immunoglobulins/immunology , Receptors, Steroid/genetics , Thyroid Hormones/genetics , Thyroid Hormones/immunology , Vitamin A/genetics , Vitamin A/immunology , Vitamin D/genetics , Vitamin D/immunology
SELECTION OF CITATIONS
SEARCH DETAIL